Hospital Standardized Mortality Ratio
Table of contents

About HSMR ................................................................. 4
Calculation ........................................................................ 4
Case selection ..................................................................... 5
Palliative care ..................................................................... 5
HSMR diagnosis groups .................................................. 6
HSMR diagnosis categories .............................................. 6
Independent variables ..................................................... 6
HSMR peer groups .......................................................... 7
HSMR subgroups ............................................................. 8
Provincial-, regional- or organization-level HSMRs .......... 8
Other information ........................................................... 9
Bibliography .....................................................................10
Appendix I: Calculating expected deaths .......................11
Appendix II: Non-resident postal codes .........................13
Appendix III: Special notes for diagnosis groups .......... 14
Appendix IV: Diagnosis groups ....................................16
  Diagnosis groups that account for about 80% of acute care in-hospital deaths .... 16
Appendix V: Diagnosis categories ................................19
Appendix VI: The Charlson Index ..................................20
  How the Charlson score is assigned: Flowchart ............23
Appendix VII: Peer groups .............................................25
Appendix VIII: Model coefficients .................................26
About HSMR

Calculation

Definition

The ratio of the actual number of acute in-hospital deaths to the expected number of in-hospital deaths, for conditions accounting for about 80% of inpatient mortality.

Method of calculation

HSMR = (Actual number of deaths among diagnosis groups accounting for 80% of inpatient mortality ÷ Expected number of deaths among diagnosis groups accounting for 80% of inpatient mortality) × 100

In other words, the HSMR is the ratio of observed (O) to expected (E) deaths.

The observed number of deaths for a hospital is the sum of the actual number of deaths in that hospital.

The expected number of deaths for a hospital is based on the sum of the probabilities of in-hospital death for cases from that hospital. Coefficients derived from logistic regression models are used to calculate the probability of in-hospital death. For each of the 72 diagnosis groups, a logistic regression model is fitted with the following independent variables: age, sex, length-of-stay group, admission category, comorbidity group and transfers. All of the models are based on data from all acute hospitals in Canada. See Appendix I for more details on how the expected number of deaths is determined.

The reference year for HSMR calculations is fiscal year 2012–2013. To allow for comparisons over time, the coefficients derived from the models using the reference year are used to determine expected deaths for all reported years.

A 95% HSMR confidence interval is calculated using Byar’s approximation:

Lower confidence limit = \( \frac{O}{E} \times (1 - 1 ÷ (9 \times O)) - 1.96 ÷ (3 \times \sqrt{O}) \) × 100

Upper confidence limit = \( \frac{(O + 1)}{E} \times (1 - (1 ÷ (9 \times (O + 1)))) + 1.96 ÷ (3 \times \sqrt{(O + 1)}) \) × 100

where \( O \) = actual number of deaths and \( E \) = expected number of deaths
Case selection

Inclusion criteria

1. Discharge between April 1 of a given year and March 31 of the following year
2. Admission to an acute care institution
3. Discharge with diagnosis group of interest (i.e., one of the diagnosis groups that account for about 80% of in-hospital deaths, after excluding patients with palliative care)
4. Age at admission between 29 days and 120 years
5. Sex recorded as male or female
6. Length of stay of up to 365 consecutive days
7. Admission category is elective (L) or emergent/urgent (U)
8. Canadian resident (see Appendix II for information on identifying non-residents)

Exclusion criteria

1. Cadavers, with discharge disposition = 08
2. Stillborns, with discharge disposition = 09
3. Sign-outs (i.e., discharged against medical advice), with discharge disposition = 06
4. Patients who do not return from a pass, with discharge disposition = 12
5. Neonates, with age at admission less than or equal to 28 days
6. Records with brain death as most responsible diagnosis code (ICD-10-CA): G93.81
7. Records with palliative care

Palliative care

In provinces and territories that submit data to the Discharge Abstract Database (namely, those outside Quebec), if a patient's most responsible diagnosis (MRDx) is Z51.5, or palliative care, he or she is considered a palliative care patient. As a result of different coding standards for palliative care in Quebec, in addition to patients with an MRDx of Z51.5, patients who have cancer as their MRDx (MRDx starts with “C”) and palliative care as any diagnosis type in the same record are also considered palliative patients.

The number of palliative care cases in a facility, along with the other descriptive analysis, is available in the private HSMR reports in CIHI’s Your Health System: Insight web tool.
HSMR diagnosis groups

HSMR diagnosis groups are determined using the first 3 digits of the most responsible diagnosis code (ICD-10-CA) recorded on the discharge. However, for some cases, another diagnosis code was used to assign to an HSMR diagnosis group (see Appendix III for more details).

The diagnosis groups accounting for about 80% of in-hospital deaths were determined based on data from 2010–2011 to 2012–2013 in the Hospital Morbidity Database. Excluding patients identified as having received palliative care during their stay (see above for the definition of palliative care), the diagnosis groups that represented the top 80% of in-hospital deaths were considered in the analysis. A list of the diagnosis groups is given in Appendix IV.

HSMR diagnosis categories

HSMR diagnosis categories are defined as a roll-up of HSMR diagnosis groups that are in the same ICD-10-CA chapter. Diagnosis categories include only HSMR diagnosis groups, not all the groups in the chapter. They are used to make drill-down analyses more meaningful for smaller hospitals. See Appendix V for the list of HSMR diagnosis categories.

Independent variables

The independent variables are derived as follows:

**Age**

Based on age in years at time of admission.

**Sex**

Based on sex recorded on the discharge.

**Length-of-Stay Group**

Based on the patient’s total length of stay (LOS). Derived from the discharge date and the admission date (i.e., LOS = discharge date − admission date). When admission date and discharge date are the same, 1 is added to the LOS (i.e., LOS = 1). 6 LOS groups are used: 1 day, 2 days, 3 to 9 days, 10 to 15 days, 16 to 21 days and 22 to 365 days.
Admission Category

Based on admission category recorded on the discharge.

Comorbidity Group

The Charlson Index score is calculated for each hospitalization stay using pre-admit comorbidities recorded on the discharge (i.e., diagnosis types 1, W, X and Y, but not also type 2). Outside Quebec, 3 comorbidity groups are derived based on the Charlson Index score as follows: 0, 1 or 2, and 3 or more.

Due to differences in data collection, it is not possible to distinguish comorbidities from secondary diagnoses in Quebec. Therefore, Charlson score groups for Quebec patients are assigned differently in order to achieve comparability across the country: patients with a score of 0 or 1 are put in group 0, patients with a score of 2, 3 or 4 are put in group 1 and patients with a score of 5 or more are put in group 2.

See Appendix VI for more information about the Charlson Index and how it is calculated.

Transfers

Assignment of cases to a “transfer in” group is based on whether the patient was transferred from an acute care institution and is determined using “institution from type” and “institution from number” variables. Transfers are assumed to be discrete admissions.

HSMR peer groups

As of February 2015, the peer group methodology has been revised. Teaching hospitals are identified as those with confirmed Teaching status from the provincial ministry or as Teaching in the provincial ministry’s submission to the Canadian MIS Database. Non-teaching hospitals were assigned to a Large, Medium or Small Community hospital peer group based on their volumes and patient complexities, as described in Appendix VII. Specialty hospitals, such as cancer centres, children’s hospitals and heart institutes, are excluded from the 4 peer groups. HSMR cases from these hospitals are not included in peer group–based analyses.

Peer information provided in Your Health System: Insight includes the minimum and maximum HSMRs for a hospital site’s peer group, as well as the HSMR value representing the 25th, 50th and 75th percentiles. Low-volume results are removed from these calculations, except for the Community — Small (H3) peer group, where only denominators less than 5 are removed.

For a list of hospitals in your peer group, please send an email to hsmr@cihi.ca.
HSMR subgroups

In addition to the above, HSMR subgroup analyses are provided to help identify more specific areas of improvement. All the HSMR subgroups are based on the risk-adjusted model for the All Cases HSMR.

Medical and surgical HSMRs

Medical and surgical cases are identified using a case mix major clinical category (MCC) partition code. Patients with an MCC partition code “I – intervention” are assigned to a surgical group; patients with an MCC partition code “D – diagnosis” are assigned to a medical group.

HSMR for ICU-related cases

Patients admitted to a special care unit at any time during their hospital stay are considered intensive care unit (ICU)–related cases. ICU-related cases are identified by any special care unit number equal to 10, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 60, 70 or 80. Note that all deaths of ICU-related cases are included in this calculation, not only deaths that occur in the ICU.

HSMR excluding transfers

For this calculation, all patients transferred to or from an acute care institution are excluded.

Provincial-, regional- or organization-level HSMRs

Provincial-, regional- or organization-level HSMRs are calculated as the sum of observed deaths for all acute care sites divided by the sum of expected deaths for all acute care sites, multiplied by 100. HSMRs are not calculated for specialty facilities (such as children’s hospitals, cancer centres and heart centres) or non-acute facilities (such as rehabilitation and day surgery facilities). The non-acute facilities are not included in provincial-, regional- or organization-level HSMRs.
Other information

Interpretation

An HSMR above the national average indicates that the hospital’s mortality rate is higher than the average rate. An HSMR below the national average indicates that the hospital's mortality rate is lower than the average rate. The confidence intervals describe the precision of the HSMR estimate. Smaller hospitals with fewer HSMR cases have less-precise HSMR estimates with wider confidence intervals. An HSMR is scaled such that a score of 100 represents the national average for the baseline year of 2012–2013.

Results based on small numbers of cases are unstable and should be interpreted with caution. Please note that the counts in the open-year reports may differ until database closure.

Data sources

Hospital Morbidity Database, CIHI.
Discharge Abstract Database, CIHI.

Availability

Most recent 5 years.
Bibliography


Appendix I: Calculating expected deaths

Calculate the probability of in-hospital death for each record (discharge) using data from your hospital and CIHI coefficient files. A coefficient (weight) is derived for each category of the adjustment variables by running a logistic regression model (e.g., there is a different risk of in-hospital death for each value of a given variable). For more details on coefficient values, see Appendix VIII.

The probability of dying for each record and the total expected deaths for a hospital are calculated as follows:

**Step 1.** Determine the patient group for which you wish to calculate expected deaths and subset your data as appropriate. There are 5 patient groups for which you can calculate probabilities: HSMR All Cases and the 4 peer group–based specialty HSMRs (medical, surgical program, ICU-related and excluding transfers). Select the patient group you are interested in and the CIHI coefficient file.

**Step 2.**

For *All Cases HSMR*:

For each record, sum the appropriate coefficient values for each adjustment variable and intercept (total sum = S). Note that each *diagnosis group* has its own intercept and set of coefficients.

\[ S = \text{intercept} + (\text{age in years} \times \text{age coefficient}) + (\text{sex coefficient}) + (\text{LOS coefficient}) + (\text{admission category coefficient}) + (\text{comorbidity coefficient}) + (\text{transfer coefficient}) \]

For example, if the patient has diagnosis group I21, select the coefficients for the I21 model and add them to the intercept. If the patient has diagnosis group I25, select coefficients for the I25 model instead.

For *HSMR subgroups*:

Select appropriate records (e.g., Medical cases for Medical HSMR), sum the coefficient values for each adjustment variable and intercept (total sum = S).

\[ S = \text{intercept} + (\text{age in years} \times \text{age coefficient}) + (\text{sex coefficient}) + (\text{LOS coefficient}) + (\text{admission category coefficient}) + (\text{diagnosis group coefficient}) + (\text{comorbidity coefficient}) + (\text{transfer coefficient}) \]
For example, if a patient has diagnosis group I21, then the weight for diag_flag I21 is added to the intercept. If a patient has diagnosis group I25, then the weight for diag_flag I25 is added instead. If the patient is male, then add the weight for sex M. If the patient is female, then sex has no contribution (i.e., it equals 0).

**Step 3.** Calculate the probability of dying for each record:

\[ p = \frac{e^S}{1 + e^S} \]

Where \( e^S \) is the exponent of \( S \).

On a calculator, exponents are often represented by the key \( e^x \). In Excel, \( p \) is calculated by the following formula: \( = \exp(S) / (1 + (\exp(S))) \).

**Step 4.** Calculate the expected deaths for each hospital. Note that expected deaths is a statistical, and not clinical, concept:

The expected number of deaths is the sum of \( p \) in Step 3 for all records from that hospital.
Appendix II: Non-resident postal codes

A postal code recorded with a 2-alpha identifier as below indicates non-residence status.

<table>
<thead>
<tr>
<th>Value</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>U.S.A., state not known</td>
</tr>
<tr>
<td>OC</td>
<td>Other Country</td>
</tr>
<tr>
<td>AK</td>
<td>Alaska</td>
</tr>
<tr>
<td>AL</td>
<td>Alabama</td>
</tr>
<tr>
<td>AR</td>
<td>Arkansas</td>
</tr>
<tr>
<td>AZ</td>
<td>Arizona</td>
</tr>
<tr>
<td>CA</td>
<td>California</td>
</tr>
<tr>
<td>CO</td>
<td>Colorado</td>
</tr>
<tr>
<td>CT</td>
<td>Connecticut</td>
</tr>
<tr>
<td>DC</td>
<td>District of Columbia</td>
</tr>
<tr>
<td>DE</td>
<td>Delaware</td>
</tr>
<tr>
<td>FL</td>
<td>Florida</td>
</tr>
<tr>
<td>GA</td>
<td>Georgia</td>
</tr>
<tr>
<td>HI</td>
<td>Hawaii</td>
</tr>
<tr>
<td>IA</td>
<td>Iowa</td>
</tr>
<tr>
<td>ID</td>
<td>Idaho</td>
</tr>
<tr>
<td>IL</td>
<td>Illinois</td>
</tr>
<tr>
<td>IN</td>
<td>Indiana</td>
</tr>
<tr>
<td>KS</td>
<td>Kansas</td>
</tr>
<tr>
<td>KY</td>
<td>Kentucky</td>
</tr>
<tr>
<td>LA</td>
<td>Louisiana</td>
</tr>
<tr>
<td>MA</td>
<td>Massachusetts</td>
</tr>
<tr>
<td>MD</td>
<td>Maryland</td>
</tr>
<tr>
<td>ME</td>
<td>Maine</td>
</tr>
<tr>
<td>MI</td>
<td>Michigan</td>
</tr>
<tr>
<td>MN</td>
<td>Minnesota</td>
</tr>
<tr>
<td>MO</td>
<td>Missouri</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Value</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>Mississippi</td>
</tr>
<tr>
<td>MT</td>
<td>Montana</td>
</tr>
<tr>
<td>NC</td>
<td>North Carolina</td>
</tr>
<tr>
<td>ND</td>
<td>North Dakota</td>
</tr>
<tr>
<td>NE</td>
<td>Nebraska</td>
</tr>
<tr>
<td>NH</td>
<td>New Hampshire</td>
</tr>
<tr>
<td>NJ</td>
<td>New Jersey</td>
</tr>
<tr>
<td>NM</td>
<td>New Mexico</td>
</tr>
<tr>
<td>NV</td>
<td>Nevada</td>
</tr>
<tr>
<td>NY</td>
<td>New York</td>
</tr>
<tr>
<td>OH</td>
<td>Ohio</td>
</tr>
<tr>
<td>OK</td>
<td>Oklahoma</td>
</tr>
<tr>
<td>OR</td>
<td>Oregon</td>
</tr>
<tr>
<td>PA</td>
<td>Pennsylvania</td>
</tr>
<tr>
<td>RI</td>
<td>Rhode Island</td>
</tr>
<tr>
<td>SC</td>
<td>South Carolina</td>
</tr>
<tr>
<td>SD</td>
<td>South Dakota</td>
</tr>
<tr>
<td>TN</td>
<td>Tennessee</td>
</tr>
<tr>
<td>TX</td>
<td>Texas</td>
</tr>
<tr>
<td>UT</td>
<td>Utah</td>
</tr>
<tr>
<td>VA</td>
<td>Virginia</td>
</tr>
<tr>
<td>VT</td>
<td>Vermont</td>
</tr>
<tr>
<td>WA</td>
<td>Washington</td>
</tr>
<tr>
<td>WI</td>
<td>Wisconsin</td>
</tr>
<tr>
<td>WV</td>
<td>West Virginia</td>
</tr>
<tr>
<td>WY</td>
<td>Wyoming</td>
</tr>
</tbody>
</table>
Appendix III: Special notes for diagnosis groups

To account for coding standards related to certain conditions and to ensure that diagnosis groups truly reflect the main reason for a patient's stay in the hospital, the following steps were taken:

1. According to World Health Organization (WHO) guidelines for dagger/asterisk codes, the etiology is coded as the most responsible diagnosis (MRDx) while the manifestation is coded as type 6. For patients with a type 6 coded on their discharge, the first 3 digits of the type 6 diagnosis determined the patient's diagnosis group.

2. If a patient was admitted with an MRDx of coronary artery disease (I25.0, I25.1, I25.8 or I25.9) but also had an acute myocardial infarction (I21 or I22) as diagnosis type 1, W, X or Y and a revascularization procedure (1.IJ.76, 1.IJ.50, 1.IJ.57.GQ or 1.IJ.54.GQ-AZ), the patient's diagnosis group was considered to be the acute myocardial infarction (i.e., I21 group if the preadmission diagnosis starts with I21, or I22 group if the preadmission diagnosis starts with I22). Please note that I22 is not one of the 72 diagnosis groups in the top 80% list.

3. If a patient was admitted with an MRDx of care involving use of rehabilitation procedures (Z50) and also had a cerebrovascular disease (CVD) (I60 to I64) as diagnosis type 1, W, X or Y, the patient's diagnosis group was considered to be the CVD. If a patient had more than one CVD, the CVD with the highest mortality is assigned. The order of codes by increasing mortality is I60, I61, I63, I64, I62.

4. If an acute lower respiratory tract infection (J10.0, J11.0, J12 to J16, J18 or J20 to J22) was coded as the MRDx and a patient also had chronic obstructive pulmonary disease (COPD) (J44), the patient's diagnosis group was considered to be COPD.

5. All patients with pneumonia (J12 to J17) as the MRDx or type 6 (where the COPD rule mentioned above was not applied) were combined with the unspecified pneumonia (J18) diagnosis group to provide a more complete case selection of pneumonia patients, as specificity might not be available and/or accessible at the time of coding.
6. All patients with an MRDx of sepsis (A42.7, A22.7, A26.7, A28.2, A32.7, A39.2, A39.3, A40, A39.4, A21.7, B00.7, B37.7, A03.9, A02.1, A20.7, A23.9, A24.1, A28.0), who did not have type 6 diagnosis, were combined with the other sepsis (A41) diagnosis group to provide a more complete case selection of sepsis patients. Variations in coding of sepsis exist across the country, and specificity might not be available and/or accessible at the time of coding. Patients with a type 6 diagnosis and sepsis were assigned to the diagnosis group according to their type 6 diagnosis.

7. All patients with an MRDx of concussion (S06.0) were removed from the intracranial injury (S06) diagnosis group. Within this group, concussion accounts for a large number of cases but very few deaths. The remaining cases represent more severe brain traumas and are largely responsible for the high mortality within this diagnosis group.
## Appendix IV: Diagnosis groups

### Diagnosis groups that account for about 80% of acute care in-hospital deaths

<table>
<thead>
<tr>
<th>Diagnosis group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A04</td>
<td>Other bacterial intestinal infections</td>
</tr>
<tr>
<td>A41*</td>
<td>Sepsis</td>
</tr>
<tr>
<td>C15</td>
<td>Malignant neoplasm of oesophagus</td>
</tr>
<tr>
<td>C16</td>
<td>Malignant neoplasm of stomach</td>
</tr>
<tr>
<td>C18</td>
<td>Malignant neoplasm of colon</td>
</tr>
<tr>
<td>C22</td>
<td>Malignant neoplasm of liver and intrahepatic bile ducts</td>
</tr>
<tr>
<td>C25</td>
<td>Malignant neoplasm of pancreas</td>
</tr>
<tr>
<td>C34</td>
<td>Malignant neoplasm of bronchus and lung</td>
</tr>
<tr>
<td>C50</td>
<td>Malignant neoplasm of breast</td>
</tr>
<tr>
<td>C61</td>
<td>Malignant neoplasm of prostate</td>
</tr>
<tr>
<td>C67</td>
<td>Malignant neoplasm of bladder</td>
</tr>
<tr>
<td>C71</td>
<td>Malignant neoplasm of brain</td>
</tr>
<tr>
<td>C78</td>
<td>Secondary malignant neoplasm of respiratory and digestive organs</td>
</tr>
<tr>
<td>C79</td>
<td>Secondary malignant neoplasm of other sites</td>
</tr>
<tr>
<td>C80</td>
<td>Malignant neoplasm without specification of site</td>
</tr>
<tr>
<td>C83</td>
<td>Diffuse non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td>C85</td>
<td>Other and unspecified types of non-Hodgkin’s lymphoma</td>
</tr>
<tr>
<td>C90</td>
<td>Multiple myeloma and malignant plasma cell neoplasms</td>
</tr>
<tr>
<td>C92</td>
<td>Myeloid leukemia</td>
</tr>
<tr>
<td>E11</td>
<td>Diabetes mellitus type 2</td>
</tr>
<tr>
<td>E86</td>
<td>Volume depletion</td>
</tr>
<tr>
<td>E87</td>
<td>Other disorders of fluid, electrolyte and acid-base balance</td>
</tr>
<tr>
<td>F03</td>
<td>Unspecified dementia</td>
</tr>
<tr>
<td>Diagnosis group</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>F05</td>
<td>Delirium, not induced by alcohol and other psychoactive substances</td>
</tr>
<tr>
<td>G30</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>G93</td>
<td>Other disorders of brain</td>
</tr>
<tr>
<td>I21*</td>
<td>Acute myocardial infarction (AMI)</td>
</tr>
<tr>
<td>I25*</td>
<td>Chronic ischemic heart disease</td>
</tr>
<tr>
<td>I24</td>
<td>Other acute ischemic heart diseases</td>
</tr>
<tr>
<td>I26</td>
<td>Pulmonary embolism</td>
</tr>
<tr>
<td>I35</td>
<td>Nonrheumatic aortic valve disorders</td>
</tr>
<tr>
<td>I46</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td>I48</td>
<td>Atrial fibrillation and flutter</td>
</tr>
<tr>
<td>I50</td>
<td>Heart failure</td>
</tr>
<tr>
<td>I60*</td>
<td>Subarachnoid haemorrhage</td>
</tr>
<tr>
<td>I61*</td>
<td>Intracerebral haemorrhage</td>
</tr>
<tr>
<td>I62*</td>
<td>Other nontraumatic intracranial haemorrhage</td>
</tr>
<tr>
<td>I63*</td>
<td>Cerebral infarction</td>
</tr>
<tr>
<td>I64*</td>
<td>Stroke, not specified as haemorrhage or infarction</td>
</tr>
<tr>
<td>I70</td>
<td>Atherosclerosis</td>
</tr>
<tr>
<td>I71</td>
<td>Aortic aneurism and dissection</td>
</tr>
<tr>
<td>J18*</td>
<td>Pneumonia</td>
</tr>
<tr>
<td>J44*</td>
<td>Other chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>J69</td>
<td>Pneumonitis due to solids and liquids</td>
</tr>
<tr>
<td>J80</td>
<td>Adult respiratory distress syndrome</td>
</tr>
<tr>
<td>J84</td>
<td>Other interstitial pulmonary diseases</td>
</tr>
<tr>
<td>J90</td>
<td>Pleural effusion, not elsewhere classified</td>
</tr>
<tr>
<td>J96</td>
<td>Respiratory failure, not elsewhere classified</td>
</tr>
<tr>
<td>K26</td>
<td>Duodenal ulcer</td>
</tr>
<tr>
<td>K55</td>
<td>Vascular disorders of intestine</td>
</tr>
<tr>
<td>K56</td>
<td>Paralytic ileus and intestinal obstruction without hernia</td>
</tr>
<tr>
<td>Diagnosis group</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>K57</td>
<td>Diverticular disease of intestine</td>
</tr>
<tr>
<td>K63</td>
<td>Other diseases of intestine</td>
</tr>
<tr>
<td>K65</td>
<td>Peritonitis</td>
</tr>
<tr>
<td>K70</td>
<td>Alcoholic liver disease</td>
</tr>
<tr>
<td>K72</td>
<td>Hepatic failure</td>
</tr>
<tr>
<td>K74</td>
<td>Fibrosis and cirrhosis of liver</td>
</tr>
<tr>
<td>K85</td>
<td>Acute pancreatitis</td>
</tr>
<tr>
<td>K92</td>
<td>Other diseases of digestive system</td>
</tr>
<tr>
<td>L03</td>
<td>Cellulitis</td>
</tr>
<tr>
<td>N17</td>
<td>Acute renal failure</td>
</tr>
<tr>
<td>N18</td>
<td>Chronic renal failure</td>
</tr>
<tr>
<td>N39</td>
<td>Other disorders of urinary system</td>
</tr>
<tr>
<td>R53</td>
<td>Malaise and fatigue</td>
</tr>
<tr>
<td>R57</td>
<td>Shock, not elsewhere classified</td>
</tr>
<tr>
<td>R64</td>
<td>Cachexia</td>
</tr>
<tr>
<td>S06*</td>
<td>Intracranial injury</td>
</tr>
<tr>
<td>S32</td>
<td>Fracture of lumbar spine and pelvis</td>
</tr>
<tr>
<td>S72</td>
<td>Fracture of femur</td>
</tr>
<tr>
<td>T81</td>
<td>Complications of procedures, not elsewhere classified</td>
</tr>
<tr>
<td>T82</td>
<td>Complications of cardiac and vascular prosthetic devices, implants and grafts</td>
</tr>
<tr>
<td>Z54</td>
<td>Convalescence</td>
</tr>
</tbody>
</table>

**Note**

* Indicates diagnosis groups where changes were applied. Refer to Appendix III for more details.
## Appendix V: Diagnosis categories

<table>
<thead>
<tr>
<th>Diagnosis categories</th>
<th>HSMR diagnosis groups included in categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certain infectious and parasitic diseases</td>
<td>A04, A41*</td>
</tr>
<tr>
<td>Primary malignant neoplasms of specified site</td>
<td>C15, C16, C18, C22, C25, C34, C50, C61, C67, C71</td>
</tr>
<tr>
<td>Malignant neoplasms of ill-defined, secondary and unspecified sites</td>
<td>C78, C79, C80</td>
</tr>
<tr>
<td>Malignant neoplasms of lymphoid, haematopoietic and related tissue</td>
<td>C83, C85, C90, C92</td>
</tr>
<tr>
<td>Endocrine, nutritional and metabolic diseases</td>
<td>E11, E86, E87</td>
</tr>
<tr>
<td>Mental and behavioral disorders and diseases of the nervous system</td>
<td>F03, F05, G30, G93</td>
</tr>
<tr>
<td>Ischemic heart diseases</td>
<td>I21*, I24, I25*</td>
</tr>
<tr>
<td>Other heart diseases</td>
<td>I26, I35, I46, I48, I50</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>I60*, I61*, I62*, I63*, I64*</td>
</tr>
<tr>
<td>Diseases of arteries, arterioles and capillaries</td>
<td>I70, I71</td>
</tr>
<tr>
<td>Diseases of the respiratory system</td>
<td>J18*, J44*, J69, J80, J84, J90, J96</td>
</tr>
<tr>
<td>Diseases of the digestive system</td>
<td>K26, K55, K56, K57, K63, K65, K70, K72, K74, K85, K92</td>
</tr>
<tr>
<td>Diseases of the genitourinary system</td>
<td>N17, N18, N39</td>
</tr>
<tr>
<td>General symptoms and signs</td>
<td>R53, R57, R64</td>
</tr>
<tr>
<td>Injuries</td>
<td>S06*, S32, S72</td>
</tr>
<tr>
<td>Complications of surgical and medical care, not elsewhere classified</td>
<td>T81, T82</td>
</tr>
<tr>
<td>Other</td>
<td>L03, Z54</td>
</tr>
</tbody>
</table>

**Note**

* Indicates diagnosis groups where changes were applied. Refer to Appendix III for more details.
Appendix VI: The Charlson Index

The Charlson Index is an overall comorbidity score that has been shown to be highly associated with mortality and has been widely used in clinical research. Based on Quan’s updated methodology (Quan, et al., 2011), the comorbid conditions below are used to calculate the Charlson Index score for each record. Conditions within each group are counted only once (e.g., if I43 and I50 appear on the abstract, the score will be 2). If conditions from different groups are present on the abstract, their weights will be summed (e.g., if I50 and F00 are present on the abstract, the score will be 4).

<table>
<thead>
<tr>
<th>Comorbid condition</th>
<th>ICD-10 codes (first 3 or 4 digits, as specified)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dementia</td>
<td>F00, F01, F02, F03, F051, G30, G311</td>
<td>2</td>
</tr>
<tr>
<td>Chronic pulmonary disease</td>
<td>I278, I279, J40, J41, J42, J43, J44, J45, J47, J60, J61, J62, J63, J64, J65, J66, J67, J684, J701, J703</td>
<td>1</td>
</tr>
<tr>
<td>Connective tissue disease/rheumatic disease</td>
<td>M05, M06, M315, M32, M33, M34, M351, M353, M360</td>
<td>1</td>
</tr>
<tr>
<td>Mild liver disease</td>
<td>B18, K700, K701, K702, K703, K709, K713, K714, K715, K717, K73, K74, K760, K762, K763, K764, K768, K769, Z944</td>
<td>2</td>
</tr>
<tr>
<td>Paraplegia and hemiplegia</td>
<td>G041, G114, G801, G802, G81, G82, G830, G831, G832, G833, G834, G839</td>
<td>2</td>
</tr>
<tr>
<td>Renal disease</td>
<td>N032, N033, N034, N035, N036, N037, N052, N053, N054, N055, N056, N057, N18, N19, N250, Z490, Z491, Z492, Z940, Z992</td>
<td>1</td>
</tr>
<tr>
<td>Cancer</td>
<td>C00, C01, C02, C03, C04, C05, C06, C07, C08, C09, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C30, C31, C32, C33, C34, C37, C38, C39, C40, C41, C43, C45, C46, C47, C48, C49, C50, C51, C52, C53, C54, C55, C56, C57, C58, C60, C61, C62, C63, C64, C65, C66, C67, C68, C69, C70, C71, C72, C73, C74, C75, C76, C81, C82, C83, C84, C85, C88, C90, C91, C92, C93, C94, C95, C96, C97</td>
<td>2</td>
</tr>
</tbody>
</table>
Comorbid condition | ICD-10 codes (first 3 or 4 digits, as specified) | Weight
--- | --- | ---
Moderate or severe liver disease | I850, I859, I864, I982, K704, K711, K721, K729, K765, K766, K767 | 4
Metastatic carcinoma | C77, C78, C79, C80 | 6
AIDS | B24, O987 | 4

Diagnosis types 1, W, X and Y are used to calculate the Charlson score. Type 3 codes for the following conditions are also included where applicable (to account for coding and classification standards):

- Asterisk codes (coded at the second position in the abstract): I43, F00, F02, M360
- Cancer and metastatic carcinoma codes, when a patient’s diagnosis group is not cancer (i.e., does not start with “C”)

The following exclusions are applied:

- For cases without a type 6 diagnosis code:
  - If a patient had a qualifying Charlson diagnosis code as type 1, W, X, Y or 3 (for selected cases), and this same code also appeared as the MRDx or type 2, then this type 1, W, X, Y or 3 code was not included in the Charlson calculation.
- For cases with a type 6 diagnosis code:
  - The original type 6 code is not included in the Charlson calculation.
  - The original MRDx is included in the Charlson calculation if this diagnosis code is not also a type 2 code.
  - If a patient had a qualifying Charlson diagnosis code as type 1, W, X, Y or 3 (for selected cases), and this same code also appeared as type 6 or type 2, then this type 1, W, X, Y or 3 code was not included in the Charlson calculation.
- For all cases:
  - When the MRDx was not used to determine a diagnosis group (see Appendix I for examples), the diagnosis used to assign the diagnosis group was not counted in the Charlson calculation. For example, if a patient had an MRDx of care involving use of rehabilitation procedures (Z50) and also had an intracerebral hemorrhage (I61) as a preadmission diagnosis, the diagnosis group would be I61 for the HSMR calculation. Accordingly, the I61 diagnosis was not included in the Charlson Index score calculation.
The flowchart on the following page illustrates how the Charlson score is assigned.

Outside Quebec, if the sum of all Charlson weights is equal to 0, the patient is in Charlson group 0. If the sum of all weights is 1 or 2, then the patient is in Charlson group 1. If the sum of all weights is 3 or more, then the patient is in Charlson group 2.

Due to differences in data collection, it is not possible to distinguish comorbidities from secondary diagnoses in Quebec data. Therefore, Charlson score groups for data submitted by Quebec are assigned differently in order to achieve comparability across the country: patients with a score of 0 or 1 are in group 0, patients with a score of 2, 3 or 4 are in group 1 and patients with a score of 5 or more are in group 2.

<table>
<thead>
<tr>
<th>Charlson group</th>
<th>Outside Quebec</th>
<th>Quebec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0–1</td>
</tr>
<tr>
<td>1</td>
<td>1–2</td>
<td>2–4</td>
</tr>
<tr>
<td>2</td>
<td>3+</td>
<td>5+</td>
</tr>
</tbody>
</table>
How the Charlson score is assigned: Flowchart

Is Dx Q in the Charlson Dx list?*

Yes

Was Dx Q used to determine the diagnostic group?

Yes

Exclude

No

Does the abstract have a type 6 Dx?

Yes

Is Dx Q type 1, 3, W, X, Y, or M?

Yes

Does Dx Q appear in the abstract as either type 2 or 6?

Yes

Exclude

No

Dx Q is included in the Charlson calculation

No

Is Dx Q type 1, 3, W, X, Y or M?

No

Is Dx Q type 1, 3, W, X, or Y?

No

Exclude

Yes

Does Dx Q appear in the abstract as either type 2 or 6?

Yes

Exclude

No

Notes

* Dx Q is the diagnosis of interest.
† Only certain conditions with Type 3 are included.
Text alternative for flowchart

To determine whether a diagnosis should be included in Charlson score calculations, the following steps are applied:

- Step 1: Diagnosis of interest is included if it is in the list of Charlson diagnoses (Appendix IV).
- Step 2: Diagnosis of interest is excluded if it determines the diagnostic group.
- Step 3: This step is a check for the diagnosis type of the diagnosis of interest and depends on the presence or absence of diagnosis type 6 in the abstract:
  - If there is a type 6 diagnosis in the abstract, and the diagnosis of interest is type 1, 3, W, X, Y or M and the diagnosis of interest does not appear in the abstract as type 2 or 6, the diagnosis of interest is included in the Charlson score calculation.
  - If there is no type 6 diagnosis in the abstract, and the diagnosis of interest is type 1, 3, W, X or Y and the diagnosis of interest does not appear in the abstract as type 2 or M, the diagnosis of interest is included in the Charlson score calculation.
Appendix VII: Peer groups

Based on 2010–2011 to 2012–2013 data, hospitals were assigned to 1 of 4 hospital peer groups:

**Teaching**
- Had confirmed Teaching status from the provincial ministry; or
- Were identified as Teaching in the provincial ministry’s submission to the Canadian MIS Database.

**H1**
**Community — Large**
2 of the following 3 criteria:
- ≥8,000 inpatient cases
- ≥10,000 weighted cases
- ≥50,000 inpatient days

**H2**
**Community — Medium**
Do not meet H1 criteria and
≥2,000 weighted cases

**H3**
**Community — Small**
Do not meet H1 criteria and
<2,000 weighted cases

Specialty hospitals, such as cancer centres, children’s hospitals, surgical units and heart institutes, are not included in any of the 4 hospital peer groups. More information can be found on the Resources page of the Indicator Library.
Appendix VIII: Model coefficients

See the All Cases Coefficients file, which includes descriptions of coefficients and variables.

For questions regarding the file, please contact us at hsmr@cihi.ca.
<table>
<thead>
<tr>
<th>CIHI Ottawa</th>
<th>CIHI Toronto</th>
<th>CIHI Victoria</th>
<th>CIHI Montréal</th>
<th>CIHI St. John's</th>
</tr>
</thead>
<tbody>
<tr>
<td>495 Richmond Road</td>
<td>4110 Yonge Street</td>
<td>880 Douglas Street</td>
<td>1010 Sherbrooke Street West</td>
<td>140 Water Street</td>
</tr>
<tr>
<td>Suite 600</td>
<td>Suite 300</td>
<td>Suite 600</td>
<td>Suite 602</td>
<td>Suite 701</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>Toronto, Ont.</td>
<td>Victoria, B.C.</td>
<td>Montréal, Que.</td>
<td>St. John’s, N.L.</td>
</tr>
<tr>
<td>K2A 4H6</td>
<td>M2P 2B7</td>
<td>V8W 2B7</td>
<td>H3A 2R7</td>
<td>A1C 6H6</td>
</tr>
</tbody>
</table>

**Talk to us**

<table>
<thead>
<tr>
<th>CIHI Ottawa</th>
<th>CIHI Toronto</th>
<th>CIHI Victoria</th>
<th>CIHI Montréal</th>
<th>CIHI St. John’s</th>
</tr>
</thead>
<tbody>
<tr>
<td>495 Richmond Road</td>
<td>4110 Yonge Street</td>
<td>880 Douglas Street</td>
<td>1010 Sherbrooke Street West</td>
<td>140 Water Street</td>
</tr>
<tr>
<td>Suite 600</td>
<td>Suite 300</td>
<td>Suite 600</td>
<td>Suite 602</td>
<td>Suite 701</td>
</tr>
<tr>
<td>Ottawa, Ont.</td>
<td>Toronto, Ont.</td>
<td>Victoria, B.C.</td>
<td>Montréal, Que.</td>
<td>St. John’s, N.L.</td>
</tr>
<tr>
<td>K2A 4H6</td>
<td>M2P 2B7</td>
<td>V8W 2B7</td>
<td>H3A 2R7</td>
<td>A1C 6H6</td>
</tr>
</tbody>
</table>

**cihi.ca**  **help@cihi.ca**